6,793 research outputs found

    Near-Earth solar wind forecasting using corotation from L5: the error introduced by heliographic latitude offset

    Get PDF
    Routine in‐situ solar wind observations from L5, located 60° behind Earth in its orbit, would provide a valuable input to space‐weather forecasting. One way to ulitise such observations is to assume that the solar wind is in perfect steady state over the 4.5 days it takes the Sun to rotate 60° and thus near‐Earth solar wind in 4.5‐days time would be identical to that at L5 today. This corotation approximation is most valid at solar minimum when the solar wind is slowly evolving. Using STEREO data, it has been possible to test L5‐corotation forecasting for a few months at solar minimum, but the various contributions to forecast error cannot be disentangled. This study uses 40+ years of magnetogram‐constrained solar wind simulations to isolate the effect of latitudinal offset between L5 and Earth due to the inclination of the ecliptic plane to the solar rotational equator. Latitudinal offset error is found to be largest at solar minimum, due to the latitudinal ordering of solar wind structure. It is also a strong function of time of year; maximum at the solstices and very low at equinoxes. At solstice, the latitudinal offset alone means L5‐corotation forecasting is expected to be less accurate than numerical solar wind models, even before accounting for time‐dependent solar wind structures. Thus, a combination of L5‐corotation and numerical solar wind modelling may provide the best forecast. These results also highlight that three‐dimensional solar wind structure must be accounted for when performing solar wind data assimilation

    Early X-ray/UV Line Signatures of GRB Progenitors and Hypernovae

    Full text link
    We calculate the X-ray/UV spectral line signatures expected from the interaction of a gamma-ray burst afterglow and a dense pre-burst environment produced by the progenitor. We explore the conditions under which Fe line and edge equivalent widths of \sim 1 keV can arise, and discuss the possibility of gaining information about possible progenitor scenarios using X-ray metal line spectra in the first few days of a burst. A wind or supernova shell around the burst produces an X-ray absorption line spectrum and later emission lines, while a hypernova funnel model produces mainly emission lines. The Fe \ked can in some cases be more prominent than the Fe \kal line. Under simple assumptions for the input continuum luminosity, current reports of observed Fe line luminosities are compatible with an Fe-enriched funnel model, while lower values are expected in shell models.Comment: revisions to ApJ ms first submitted 8/21/99; uses a higher and flatter input spectrum, with modified implications suggesting preference for funnel model

    Anomalous prompt photon production in hadronic collisions at low-xTx_T

    Full text link
    We investigate the discrepancy that exists at low-xT=2pT/sx_T=2p_T/\sqrt{s} between the next--to--leading order QCD calculations of prompt photon production and the measured cross section. The central values of the measured cross section are of order 100\% larger than QCD predictions in this region. It has been suggested that the bremsstrahlung contribution may account for this discrepancy. The quark fragmentation function Dγ/q(z)D_{\gamma/q}(z) has not been measured and an exactly known asymptotic form is normally used in calculations. We examine the effect of much larger fragmentation functions on the QCD predictions. After illustrating the effect of the large fragmentation functions in some detail for recent CDF data at s\sqrt{s}=1.8~TeV, we perform a χ2\chi^2 fit to 8 prompt photon data sets ranging in CMS energy from 24~GeV to 1.8~TeV. While a large fragmentation function normalization may prove to play an important role in resolving the discrepancy, the present theoretical and experimental uncertainties prevent any definite normalization value from being determined.Comment: 14 pages, LBL-33122 and UCB-PTH-92/38. 13 figures available by email, specify postscript or topdrawe

    New parton distributions from large-x and low-Q^2 data

    Full text link
    We report results of a new global next-to-leading order fit of parton distribution functions in which cuts on W and Q are relaxed, thereby including more data at high values of x. Effects of target mass corrections (TMCs), higher twist contributions, and nuclear corrections for deuterium data are significant in the large-x region. The leading twist parton distributions are found to be stable to TMC model variations as long as higher twist contributions are also included. The behavior of the d quark as x-->1 is particularly sensitive to the deuterium corrections, and using realistic nuclear smearing models the d-quark distribution at large x is found to be softer than in previous fits performed with more restrictive cuts.Comment: 31 pages, 8 figures. Minor corrections. References added. To appear in Phys.Rev.

    Temperature-dependent proximity magnetism in Pt

    Full text link
    We experimentally demonstrate the existence of magnetic coupling between two ferromagnets separated by a thin Pt layer. The coupling remains ferromagnetic regardless of the Pt thickness, and exhibits a significant dependence on temperature. Therefore, it cannot be explained by the established mechanisms of magnetic coupling across nonmagnetic spacers. We show that the experimental results are consistent with the presence of magnetism induced in Pt in proximity to ferromagnets, in direct analogy to the well-known proximity effects in superconductivity.Comment: 4 pages, 3 figure

    Lambda Polarization in Polarized Proton-Proton Collisions at RHIC

    Get PDF
    We discuss Lambda polarization in semi-inclusive proton-proton collisions, with one of the protons longitudinally polarized. The hyperfine interaction responsible for the Δ\Delta-NN and Σ\Sigma-Λ\Lambda mass splittings gives rise to flavor asymmetric fragmentation functions and to sizable polarized non-strange fragmentation functions. We predict large positive Lambda polarization in polarized proton-proton collisions at large rapidities of the produced Lambda, while other models, based on SU(3) flavor symmetric fragmentation functions, predict zero or negative Lambda polarization. The effect of Σ0\Sigma^0 and Σ\Sigma^* decays is also discussed. Forthcoming experiments at RHIC will be able to differentiate between these predictions.Comment: 18 pages, 5 figure

    Global solar wind variations over the last four centuries

    Get PDF
    The most recent “grand minimum” of solar activity, the Maunder minimum (MM, 1650–1710), is of great interest both for understanding the solar dynamo and providing insight into possible future heliospheric conditions. Here, we use nearly 30 years of output from a data-constrained magnetohydrodynamic model of the solar corona to calibrate heliospheric reconstructions based solely on sunspot observations. Using these empirical relations, we produce the first quantitative estimate of global solar wind variations over the last 400 years. Relative to the modern era, the MM shows a factor 2 reduction in near-Earth heliospheric magnetic field strength and solar wind speed, and up to a factor 4 increase in solar wind Mach number. Thus solar wind energy input into the Earth’s magnetosphere was reduced, resulting in a more Jupiter-like system, in agreement with the dearth of auroral reports from the time. The global heliosphere was both smaller and more symmetric under MM conditions, which has implications for the interpretation of cosmogenic radionuclide data and resulting total solar irradiance estimates during grand minima

    Compton Scattering by the Proton using a Large-Acceptance Arrangement

    Full text link
    Compton scattering by the proton has been measured using the tagged-photon facility at MAMI (Mainz) and the large-acceptance arrangement LARA. The new data are interpreted in terms of dispersion theory based on the SAID-SM99K parameterization of photo-meson amplitudes. It is found that two-pion exchange in the t-channel is needed for a description of the data in the second resonance region. The data are well represented if this channel is modeled by a single pole with mass parameter m(sigma)=600 MeV. The asymptotic part of the spin dependent amplitude is found to be well represented by pi-0-exchange in the t-channel. A backward spin-polarizability of gamma(pi)=(-37.1+-0.6(stat+syst)+-3.0(model))x10^{-4}fm^4 has been determined from data of the first resonance region below 455 MeV. This value is in a good agreement with predictions of dispersion relations and chiral pertubation theory. From a subset of data between 280 and 360 MeV the resonance pion-photoproduction amplitudes were evaluated leading to a E2/M1 multipole ratio of the p-to-Delta radiative transition of EMR(340 MeV)=(-1.7+-0.4(stat+syst)+-0.2(model))%. It was found that this number is dependent on the parameterization of photo-meson amplitudes. With the MAID2K parameterization an E2/M1 multipole ratio of EMR(340 MeV)=(-2.0+-0.4(stat+syst)+-0.2(model))% is obtained

    kt Effects in Direct-Photon Production

    Full text link
    We discuss the phenomenology of initial-state parton-kt broadening in direct-photon production and related processes in hadron collisions. After a brief summary of the theoretical basis for a Gaussian-smearing approach, we present a systematic study of recent results on fixed-target and collider direct-photon production, using complementary data on diphoton and pion production to provide empirical guidance on the required amount of kt broadening. This approach provides a consistent description of the observed pattern of deviation of next-to-leading order QCD calculations relative to the direct-photon data, and accounts for the shape and normalization difference between fixed-order perturbative calculations and the data. We also discuss the uncertainties in this phenomenological approach, the implications of these results on the extraction of the gluon distribution of the nucleon, and the comparison of our findings to recent related work.Comment: LaTeX, uses revtex and epsf, 37 pages, 15 figure
    corecore